Chapter 2 - Signal Properties¶
Periodicity¶
Worked Example 1:¶
Find the fundamental period of a sine wave with angular frequency \(\omega_{0}\) and amplitude \(A\).
\[
f(t) = A\sin{\left(\omega_{0} t\right)}
\]
Show answer
\[
T = \frac{2\pi}{\omega_{0}}
\]
Show solution
Using the property
\[
f(t) = f(t + T)
\]
We get
\[
A\sin{\left(\omega_{0}t\right)} = A\sin{\left(\omega_{0}\left(t + T\right)\right)}
\]
Now expanding out
\[
A\sin{\left(\omega_{0}\left(t + T\right)\right)} = A\sin{\left(\omega_{0}t + \omega_{0} T\right)}
\]
Using the trigonometric identity:
\[
\sin{(x)} = \sin{\left(x + 2\pi k\right)}
\]
We can compare corresponding terms and get:
\[
\omega_{0}T = 2\pi k
\]
Then solving for \(T\), we have:
\[
T = \frac{2\pi k}{\omega_{0}}
\]
The smallest positive \(T\) would be when \(k=1\), so the fundamental period for the signal is:
\[
\Rightarrow T = \frac{2\pi}{\omega_{0}}
\]